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Introduction

The modeling of flow in porous media touches
many important aspects of our everyday lives,
from sustaining and protecting our subsurface
aquifers to enhancing the production of petroleum
reservoirs. Effective simulation of these multi-
scale and multi-component flows, however, is in-
hibited by fundamental mathematical and algo-
rithmic challenges. One such challenge is the
need to resolve the multiscale structure of ge-
ological formations; the length scales observed
in sedimentary laminae range from the millime-
ter scale upward, while the simulation domain
may be on the order of several kilometers. Fully
resolved simulations are, thus, computationally
intractable, yet the fine-scale variations of the
model parameters (e.g., structure and orientation
of laminae) significantly affect the properties of
the solution at all scales. This complex inter-
action of different length scales is not unique to
flows in porous media, but arises in many other
disciplines, including composite material design
and analysis, hurricane and wild-fire modeling,
and atmospheric and ocean circulation models.

Multilevel Upscaling

The objective of a classical upscaling or ho-
mogenization procedure is to define an approxi-
mate mathematical model in which theeffective
properties of the medium vary on a scale suit-
able for efficient computation. To do this, the
macroscopic flow model, with parameters that
vary on the microscopic (or fine) scale, isaver-
aged, in some sense, over the microscopic length
scales (see [1] and references therein). This ap-
proach has proved useful for modeling single-

A geostatistical realization of a strongly hetero-
geneous permeability field with variation (from
light to dark) of 6 orders of magnitude (top). Our
multilevel upscaling algorithm constructs a self-
consistent hierarchy of coarse-scale models for
single-phase saturated flow, as well as the corre-
sponding multiscale basis functions, without solv-
ing any local or global fine-scale problems. The
multiscale basis function for the center of the do-
main, shown in the lower figure, was generated
using this algorithm. The fine-scale structure is
clearly visible in the surface, which accurately
represents the influence of this structure on the
flow.

phase flow in mildly heterogeneous porous me-
dia; however, both strongly heterogeneous media
and multiphase flow remain problematic.

In this research, we explore a new multilevel
upscaling (MLUPS) methodology that accurately
and efficiently treats the multiscale properties of
the underlying porous medium and flow model.
MLUPS is based on a generalization of the multi-
grid homogenization (MGH) algorithm devel-
oped in [1]. The MGH approach builds on the ob-
servation that the operator-dependent variational
coarsening central to robust multigrid algorithms
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can also be viewed as an upscaling procedure.
In the MGH procedure, however, the focus is

on the coarsest scale and the fact that the vari-
ational coarsening procedure generates a com-
plete and self-consistent hierarchy of coarse-scale
models, with their corresponding basis functions,
is neglected. In the MLUPS method, this hierar-
chy is created by taking the fine-scale discretiza-
tion and using BoxMG (see [1] and references
therein) to coarsen it to a specified computational
scale. This operator-induced variational coarsen-
ing effectively reduces the dimension of the fine-
scale operator by selecting an appropriate local,
low-energy basis for the coarse scale. The coarse-
scale model is solved, with this solution yielding
a fine-scale representation via the multiscale ba-
sis functions. This approach provides a natural
setting for adaptivity, error estimation, and exten-
sions to more complex regimes such as unsatu-
rated, multiphase, and reactive flows.

Application to Geostatistical Media

We consider a permeability field generated by
the GSLIB software package [2]. This field,
shown in the first figure, has a range of perme-
abilities from approximately 10−3 (light) to 103

(dark). A coarse-scale pressure gradient is im-
posed on a fine computational grid of 256×256
elements, with impermeable boundary conditions
on the top and bottom edges, to induce flow
from left to right. We compare the results of the
MLUPS method with the current state of the art,
the Multiscale Finite Element Method (MSFEM)
[3], for a coarse computational scale of 8×8 ele-
ments.

Errors in both the average flux across the line
x= x1, q(x1), and the pressure,p(x,y), are shown
in the table below. A 2048× 2048 grid calcu-
lation, which predicts a constant flux in thex-
direction of 1.13, is used to represent the true so-
lution of the PDE, while an important benchmark
is the bilinear finite element (BLFEM) solution
on the 256× 256 grid that indicates the “best”
accuracy that we can, in general, expect at the
fine computational scale. This computation takes
1.94s on a 1.6Ghz Athlon machine, only slightly

more than the 1.88s required by MSFEM, while
the MLUPS computation requires only 0.18s, less
than one tenth of the MSFEM cost.
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Both methods follow general trends in the pres-
sure quite well. MSFEM, however, exhibits more
significant localized deviations from the true pres-
sure, induced by the artificial boundary condi-
tions used to determine the basis functions.

Errors in flow properties

Measure BLFEM MSFEM MLUPS

‖e(q)‖∞ 2.96×10−2 3.32×10−1 2.08×10−1

‖e(q)‖2 2.96×10−2 1.55×10−1 1.06×10−1

‖e(p)‖∞ 1.20×10−2 8.38×10−2 9.52×10−2

‖e(p)‖2 8.92×10−4 1.33×10−2 9.58×10−3
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